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This study aims to improve crop yield forecasting for maize, wheat, and rice in Korea by combining
meteorological trend analysis, correlation assessments, and machine learning. The study uses various
machine learning models, including Multiple Linear Regression, Stepwise MLR, LASSO, Elastic Net, Ridge
Regression, Random Forest and Artificial Neural Networks, to create forecasting models. The data is analyzed
ABSTRACT in both yveighted and unV\{eighted formats and a 70_:30 data _split is applied for training and '_[estir_19._The
results aim to enhance prediction accuracy, promote climate-resilient farming and provide data-driven insights

for agricultural decisions in Korea.
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Introduction

Chhattisgarh, a state in India, primarily produces rice,
wheat, maize and pulses. Despite improvements through
schemes like Rajiv Gandhi Kisan Nyay Yojana,
productivity remains below the national average. India’s
rice production is projected at 119.93 million tonnes Maize,
a major cereal, is at risk of a 55% yield decline by 2080
due to climate stress, highlighting the need for climate-
resilient varieties (Byjesh et al., 2010).

Chhattisgarh faces climate change challenges like
soil depletion, groundwater depletion and overuse of
resources. Rainfed agriculture dominates, with poor
awareness and limited climate models. Machine learning
offers advanced tools for yield forecasting, improving crop
predictions, resource planning, policy planning, market
stability and risk management in agriculture (Shrivastava
et al., 2019; Angom et al., 2021; Attri et al., 2024).

The objective of the present study is to analyse the
trends in weather parameters, examine their correlation
with crop yield, and develop as well as compare the
prediction accuracy of different machine learning models
for crop yield prediction.

Materials and Methods
Study area and data collection

Korea, a North-West District in Chhattisgarh, India,
was analyzed using crop yield data from 2000 to 2022
and weather data from NASA Power. The analysis
included crop production, cultivated area and weekly
averages of weather parameters (https://
power.larc.nasa.gov/data-access-viewer/).

Methodology

Weather indices were developed for each weather
variable, with unweighted indices summarizing individual
variables or their interactions, and weighted indices using
the product sum of these variables, considering their
correlation with crop yield. The formulas for both indices
include Tmax, Tmin, RF and RH, with unweighted indices
totalling weekly weather variable values.

Unweighted Weather indices

m
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Fig. 1 : Study area map of Korea, Chhattisgarh.

Weighted weather indices

m
Zy = z i X
w=1

m

Loy = Z riij'm Xiw X jw (2)
w=1
Where,
e Value of i"™\i’™ weather variable under study in
wih week,

o Correlation coefficient of yield with i™" weather
variable/ product of i" and i’™" weather variables
in wih week.

e \Week of forecast.
Climatic Variability assessment
The study used a 22-year dataset of daily

meteorological observations to assess long-term climatic
trends and variability. The data was analyzed monthly
for seasonal and annual evaluations. Statistical analyses
were performed to evaluate spatial and temporal
variability, using key descriptive statistics like mean,
standard deviation and coefficient of variation as
indicators.

Trend analysis of Climatic and Yield data
Mann Kendell test

The Mann-Kendall test is a reliable non-parametric
method for detecting trends in time series data,
recommended by the World Meteorological Organization
for analyzing monotonic trends in hydro-meteorological
datasets despite structural changes (Tian et al., 2010).

The test statistic Zc follows a standard normal
distribution, with a null hypothesis (H€ ) rejected if it
exceeds the critical value £Z...0/2, indicating a significant
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Table 1: Unweighted and weighted weather indices for the
development of multivariate models.

Mean weekly weather Unweighted Weighted
variable weather weather
indices indices
T, Z10 Z11
T 720 721
Relative Humidity (RH) Z30 Z31
Rainfall (RF) Z40 741
T . >Tmin 7120 7121
T, *Relative Humidity Z130 7131
T, rRainfall 27140 7141
T, *Relative Humidity 7230 7231
T . *Rainfall 2240 7241
Rainfall*Relative Humidity | Z340 7341

trend in the time series (R) and an acceptance (A), if it is
less than or equal to Z...z2, with a 95% confidence level.
Sen’s slope

The approach involves determining the slope by

assessing the variation in measurement relative to the
variation in time.

,OX =X
Q== ©)
Where,

e Q’ = slope between data points x,” and X,

e X’ = data measurement at time t’

e X = data measurement at time t
Different Models Analyzed

This study aims to improve crop yield forecasting for
maize, wheat and rice in Korea by combining
meteorological trend analysis, correlation assessments,
and machine learning. The study uses various machine
learning models, including Multiple Linear Regression,
Stepwise MLR, LASSO, Elastic Net, Ridge Regression,
Random Forest, and Artificial Neural Networks, to create
forecasting models. The data is analyzed in both weighted
and unweighted formats, and a 70:30 data split is applied
for training and testing. The results aim to enhance
prediction accuracy, promote climate-resilient farming,
and provide data-driven insights for agricultural decisions
in Korea.

Statistical analysis and Model evaluation

The study used statistical metrics like Coefficient of
Determination, Root Mean Square Error, Normalized Root
Mean Square Error, and Mean Absolute Error to evaluate
the performance of various crop yield prediction models,
determining the most accurate and reliable model.

Results and Discussion

Trend analysis of weather parameters for Korea
region (2000-2022)

The Mann-Kendall test was used to analyze
meteorological trends in Korea from 2000 to 2022. Results
showed a cooling trend with an annual average of 30.7°C,
increased relative humidity, and stable minimum
temperatures. Rainfall patterns remained consistent,
primarily during the monsoon, averaging 1161.06 mm
annually. These findings could impact long-term
agricultural strategies and yield forecasts in Korea,
highlighting the importance of addressing skewed
meteorological variables.

Table 2 : Trend analysis using weather parameters.

Average Maximum temperature (°C)

Time series Mean |SD |CV |[MK P-value|Slope
Annual 30.7 071 (231 |-0.34 0.02** |-0.03
Winter 26.1 123 |4.69 |-0.310.03** (-0.09
Pre-Monsoon |375 121 |323 |-012044 -0.05
Monsoon 309 089 (289 [0.04 0.82 0.00

Post Monsoon |26.9 139 |519 |-0.20019 -0.06

Average Minimum temperature (°C)

Time series Mean [SD |CV |[MK P-value |Slope
Annual 184 |036 |195 |-0.08 0.60 001
Winter 104 (077 |736 |-0.200.17 0.03
Pre-Monsoon |21.5 0.78 |361 |-0.08 0.60 0.01
Monsoon 234 039 |167 |0.11 047 0.01

Post Monsoon | 15.7 0.68 |4.33
Average Relative humidity (%)

0.02 0.90 0.00

Time series Mean [SD |CV |[MK P-value |Slope
Annual 573 395 |6.88 |041 0.01**|0.27
Winter 48.7 828 |17.00 |0.40 0.01** |0.55
Pre-Monsoon |29.2 6.52 |2233 (021 0.16 021
Monsoon 78.7 372 |473 |006 0.71 0.03

Post Monsoon | 69.8 6.98 1999 |025 0.09 0.38
Average Rainfall (mm)

Time series Mean [SD |CV |[MK P-value |Slope
Annual 1161.06|194.31| 16.74 |0.18 0.22 5.08
Winter 4507 |30.75 |68.22 |0.20 0.17 1.36
Pre-monsoon |79.32 (4174 |52.62 |0.08 0.60 0.66
Monsoon 975.89 |161.11|16.51 |0.07 0.67 2.22
Post monsoon |60.78 |66.18 | 108.88|0.04 0.82 0.24

Where, *** 0.1 level of significance, **0.05 level of
significance, * 0.01 level of significance.

Mean, SD - Standard Deviation, CV — Coefficient of Variation,
MK — Mann Kendall test, P Value — probability value, slope
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Table 3 : Correlation between weather and maize yield.

Correlation Coefficient Matrix - Maize

SMW T in RF RH
28 0.070 0.057 0.026 -0.151
29 0.223 0.101 -0.106 -0.122
30 -0.078 -0.152 0.091 0.262
3 -0.274 -0.312 0.169 -0.017
R? -0.166 -0.023 0.262 0.179
3 0121 -0.245 -0.097 0.142
A 0.047 -0.351 -0.056 -0.057
35 0.069 0.276 0.161 0.097
36 0.072 0.057 -0.047 -0.256
37 -0.036 0.603* 0.246 0.178
3 -0.022 0.515* 0.335 0.224
39 -0.074 0.165 0.062 0.195
40 -0.033 0.235 0.107 0.014
41 -0.295 0.249 0.476* 0211
42 -0.062 0.297 0.335 -0.042
43 -0.161 0.142 0.222 -0.058
44 -0.365 -0.319 0.229 0.004

Where, *Significant at 5% level.

Table 4 : Correlation between weather and Wheat yield.

Correlation analysis between Weather variables and
Crop yield

Correlation between weather and maize yield

The study analyzed the correlation between weekly
weather parameters and maize yield in Korea and India.
Results showed that minimum temperature during SMW
37 and 38 positively impacts yield by enhancing enzymatic
activity and starch accumulation. In India, warmer nights
mitigate cold stress and improve kernel weight. Rainfall
positively influences yield during physiological maturity
(Singh et al., 2022 and Affoh, 2022) (Table 3).

Correlation between weather and Wheat yield

The study assessed wheat yield response to weather
parameters during the Rabi season, revealing negative
correlations between maximum temperature and
minimum temperature. High temperatures impaired
photosynthesis and tiller development, reducing yield.
Minimum temperatures disrupted metabolic activity and
nutrient uptake, leading to stunted development. Relative
humidity negatively impacted yield during harvesting due
to poor drying, increased fungal risk, and delayed harvest
(Hlavééova et al., 2018 and Liu et al., 2019).

Correlation between weather and rice yield

The study analyzed the impact of weather on rice
yield during the Kharif season, focusing on vegetative
and reproductive stages. Increased maximum

Table 5 : Correlation between weather and rice yield.

Correlation Coefficient Matrix - Wheat

SMW T T RF RH
44 0.024 0.057 0.180 -0.017
45 -0.112 -0.222 0154 -0.129
46 -0.119 -0.041 0012 -0.192
47 -0.285 -0.199 0.157 0.126
48 -0.222 -0.371 0.214 -0.093
49 -0.076 -0.297 -0.038 -0.218
50 -0.184 0.077 0.339 0.406
51 -0.420* -0.518* -0.006 0.149
52 -0.144 -0.461* 0.094 -0.149
1 -0.300 -0.169 0.187 0.080
2 -0.266 -0.284 0.122 0.288
3 -0.402 -0.132 0.170 0.250
4 -0.148 -0.198 -0.015 -0.242
5 0.165 0031 -0.092 -0.309
6 -0.037 -0.186 -0.211 -0.290
7 -0.276 -0.173 0.056 0.218
8 -0.219 -0.164 0.166 0.356
9 -0.404 -0.259 0.267 0.267
10 -0.262 -0.273 0.070 -0.037
1 -0.170 -0.160 0.115 0.141
12 -0.274 -0.272 0211 0.081
13 0.049 0.016 0.005 -0.520*
14 -0.026 0.058 0.043 0.032

Where, *Significant at 5% level.

Correlation Coefficient Matrix - Rice

SMW Tmax Tmin RF RH

26 -0.010 -0.056 0.029 -0.031
27 -0.144 0.135 0.249 0211
28 -0.208 0.028 0.264 0.140
29 0.037 -0.015 0204 0.050
30 -0.137 -0.005 0.310 0.147
3 -0.353 0.105 0.479* 0.288
R? -0.436* -0.117 0.577* 0.416*
3 -0.074 0.115 0.130 0.201
A -0.277 -0.052 0.280 0.207
35 -0.090 0.128 0.329 0.267
36 -0.101 0.064 0.203 -0.155
37 -0.126 0.539* 0404 0.049
3 0.036 0.359 0.065 -0.019
39 -0.085 0.251 0.239 0.259
40 -0.407 0.275 0.398 0.212
41 -0.481* 0.426* 0.625* 0.493*
42 -0.291 0.148 0.263 -0.244
43 -0.465* 0.241 0.423* 0.092

Where, *Significant at 5% level.
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Table 6 : Comparison of Maize Yield prediction performance using Weighted and Unweighted across different Models.

Performance of Maize Yield
Unweighted
Models Iteration | Training Testing
R2 RMSE nRMSE MAE R2 RMSE nRMSE MAE
ANN 361 094 0.07 0.07* 0.05 0.96 013 023 011
ELNET 106 013 0.25 0.25 0.20 084 012 023 0.10
LASSO 106 013 0.25 0.25 0.20 084 012 023 0.10
MLR 8 033 021 022 0.17 0.96 0.08 0.11* 0.06
RF 2 0.89 0.16 0.16 013 0.96 0.06 012 0.05
RIDGE 146 0.15 0.26 0.26 021 0.65 011 024 0.10
SMLR 8 033 021 022 0.17 0.96 0.08 0.11* 0.06
Weighted
Models Iteration | Training Testing
R2 RMSE nRMSE MAE R2 RMSE nRMSE MAE

ANN 21 0.99 0.02 0.03* 0.02 0.79 0.17 0.19* 0.16
ELNET R 0.32 023 023 021 094 011 024 011
LASSO R 0.32 023 023 021 094 011 023 0.10
MLR 87 0.45 0.19 0.19 0.17 0.76 013 021 0.09
RF 306 0.92 013 013 011 094 013 021 013
RIDGE 181 0.25 0.25 0.25 022 0.40 0.14 0.30 013
SMLR 87 0.45 0.19 0.19 0.17 0.76 013 021 0.09

ANN - Artificial Neural Network, ELNET - Elastic Net, LASSO - Least Absolute Shrinkage and Selection Operator, MLR -
Multiple Linear Regression, RF —Random Forest, RIDGE - Ridge Regression, SMLR - Multiple Linear Regression.

temperature negatively affected yield during SMW 32,
41 and 43, while a slight rise in minimum temperature
improved grain setting in subtropical regions. Precipitation
during reproductive and harvest phases showed a strong
positive correlation with yield. Relative humidity positively
impacted conditions in SMW 32 and 41 (Nguyen et al.,
2014; Yanetal., 2021; Tallaetal., 2017; Bal et al., 2023).

Rainfall and relative humidity significantly impact rice
yield in different rice growing regions, with rainfall
supporting productivity during flowering and grain setting,
and relative humidity improving pollen viability and
reducing moisture loss during reproductive stages (Table
5).

Development of the Yield Prediction Model

The study developed crop yield prediction models
for Maize, Wheat, and Rice using machine learning
algorithms. The models were created using 22 years of
data from 2000-2022, with 70% for training and 30% for
testing. The models aimed to identify linear and non-linear
relationships between climatic factors and crop yields.

To improve reliability, 3-fold cross-validation, repeated
runs, and hyperparameter optimization were applied.

Maize Yield prediction performance

The Artificial Neural Network (ANN) demonstrated
strong learning ability in predicting maize yield, with
Multiple Linear Regression (MLR) and Stepwise MLR
achieving the highest accuracy in the unweighted dataset,
while ANN remained the top performer in the weighted
dataset, suggesting simpler models may generalize better
in unweighted cases (Table 6).

Wheat Yield Prediction performance

The ANN model demonstrated strong learning
abilities for predicting wheat yield, but the MLR model
performed best with unweighted data, while MLR and
SMLR outperformed others with weighted data,
suggesting simpler models like MLR and SMLR offer
better generalization and accuracy (Table 7).

Rice Yield prediction performance
The ANN model demonstrated strong learning
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Performance of Wheat Yield

Unweighted
Models Iteration | Training Testing
R2 RMSE nRMSE MAE R2 RMSE nRMSE MAE
ANN 217 0.97 0.05 0.06* 0.04 0.86 012 013 012
ELNET 183 024 0.25 0.25 021 0.81 0.07 017 0.06
LASSO 183 023 0.25 0.25 021 0.82 0.08 0.18 0.06
MLR 313 0.42 0.19 021 0.16 094 0.07 0.10* 0.06
RF 183 0.87 013 013 011 0.96 0.05 011 0.03
RIDGE 183 027 024 024 021 0.81 0.07 0.17 0.06
SMLR 29?2 0.47 0.19 0.20 0.16 0.92 012 0.17 0.09
Weighted
Models Iteration | Training Testing
R2 RMSE nRMSE MAE R2 RMSE nRMSE MAE

ANN 154 0.99 0.03 0.03* 0.02 0.97 0.05 0.07 0.04
ELNET 164 0.80 011 012 0.09 0.00 0.72 0.17 022
LASSO 319 0.87 0.08 0.10 0.06 0.96 0.09 0.10 0.08
MLR 8 0.89 0.07 0.10 0.05 0.99 0.03 0.03* 0.03
RF 4 0.92 0.09 0.09 0.08 0.95 0.05 0.09 0.03
RIDGE 124 0.85 0.09 0.10 0.08 0.98 0.06 0.08 0.04
SMLR 8 0.89 0.07 0.10 0.05 0.99 0.03 0.03* 0.03

Table 8 : Comparison of Rice Yield p

rediction Performance using weighted and unweighted across different models.

Performance of Maize Yield

Unweighted
Models Iteration | Training Testing
R2 RMSE nRMSE MAE R2 RMSE nRMSE MAE
ANN 364 0.88 0.09 0.09* 0.07 0.93 0.07 013 0.06
ELNET 127 0.42 0.20 0.20 0.17 0.97 0.05 0.08 0.04
LASSO 127 0.42 0.20 0.20 0.17 0.97 0.06 0.10 0.05
MLR 373 0.77 012 012 0.10 0.98 0.03 0.06* 0.03
RF ! 0.90 011 011 0.09 0.99 0.06 0.10 0.05
RIDGE 17 0.39 0.20 0.20 0.17 0.98 0.04 0.07 0.03
SMLR 279 0.77 012 012 0.10 0.97 0.04 0.06* 0.04
Weighted
Models Iteration | Training Testing
R2 RMSE nRMSE MAE R2 RMSE nRMSE MAE

ANN 266 0.97 0.04 0.04* 0.03 0.99 0.04 0.05* 0.03
ELNET ! 0.70 0.16 0.16 0.14 0.98 0.04 0.08 0.03
LASSO 17 0.58 0.17 0.17 0.15 0.99 0.05 0.10 0.05
MLR a1 0.82 011 011 0.09 0.99 0.05 0.10 0.04
RF K] 094 0.07 0.07 0.06 0.99 0.03 0.05* 0.02
RIDGE 334 0.56 0.18 0.18 0.15 0.93 0.07 012 0.06
SMLR a1 0.82 011 011 0.09 0.99 0.05 0.10 0.04
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abilities in training both unweighted and weighted
datasets. MLR and SMLR had the best generalization
and lowest prediction error in unweighted testing. ANN
and RF achieved highest accuracy under weighted
conditions (Table 8).

The study utilized regularized regression models like
LASSO, Elastic Net and Ridge Regression to predict
crop Yyield. These models penalize coefficients, allowing
some variables to have zero or near-zero values. The
performance was evaluated using metrics like R?, RMSE,
MAE, and MBE, showing that fewer influential variables
did not reduce accuracy, resulting in more reliable
predictions. (Vashisth et al., 2020 and Kumar et al.,
2019).

The study evaluated the performance of a model using
both unweighted and weighted datasets. Weighted models
showed lower nRMSE values, indicating better predictive
accuracy and stability. This highlights the importance of
using weighted data to account for historical yield and
climate variations. The study emphasizes the significance
of assigning appropriate weights to data points for reliable
yield forecasts.

The study found that ANN outperformed other
models in training across all crops and datasets. MLR
and SMLR performed best in unweighted datasets, while
ANN, MLR, SMLR and ANN and RF were comparable
in weighted datasets. These findings underscore the
importance of understanding seasonal climate variability
for accurate yield forecasting and climate-resilient
agriculture.

Conclusion

A climate study in Chhattisgarh, Korea, revealed a
cooling trend, with crop yields varying. Maize yield
improved with stable minimum and rainfall conditions,
but suffered from high maximum temperatures. Wheat
was negatively impacted by both high and low
temperatures, while rice benefited from minimum
temperature, rainfall, and humidity but declined with high
maximum temperatures. Advanced models like ANN,
MLR, SMLR and RF proved effective for crop yield
prediction crucial for climate resilient agriculture.
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