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This study aims to improve crop yield forecasting for maize, wheat, and rice in Korea by combining
meteorological trend analysis, correlation assessments, and machine learning. The study uses various
machine learning models, including Multiple Linear Regression, Stepwise MLR, LASSO, Elastic Net, Ridge
Regression, Random Forest and Artificial Neural Networks, to create forecasting models. The data is analyzed
in both weighted and unweighted formats and a 70:30 data split is applied for training and testing. The
results aim to enhance prediction accuracy, promote climate-resilient farming and provide data-driven insights
for agricultural decisions in Korea.
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ABSTRACT

Introduction
Chhattisgarh, a state in India, primarily produces rice,

wheat, maize and pulses. Despite improvements through
schemes like Rajiv Gandhi Kisan Nyay Yojana,
productivity remains below the national average. India’s
rice production is projected at 119.93 million tonnes Maize,
a major cereal, is at risk of a 55% yield decline by 2080
due to climate stress, highlighting the need for climate-
resilient varieties (Byjesh et al., 2010).

Chhattisgarh faces climate change challenges like
soil depletion, groundwater depletion and overuse of
resources. Rainfed agriculture dominates, with poor
awareness and limited climate models. Machine learning
offers advanced tools for yield forecasting, improving crop
predictions, resource planning, policy planning, market
stability and risk management in agriculture (Shrivastava
et al., 2019; Angom et al., 2021; Attri et al., 2024).

The objective of the present study is to analyse the
trends in weather parameters, examine their correlation
with crop yield, and develop as well as compare the
prediction accuracy of different machine learning models
for crop yield prediction.

Materials and Methods
Study area and data collection

Korea, a North-West District in Chhattisgarh, India,
was analyzed using crop yield data from 2000 to 2022
and weather data from NASA Power. The analysis
included crop production, cultivated area and weekly
averages of weather parameters (https://
power.larc.nasa.gov/data-access-viewer/).
Methodology

Weather indices were developed for each weather
variable, with unweighted indices summarizing individual
variables or their interactions, and weighted indices using
the product sum of these variables, considering their
correlation with crop yield. The formulas for both indices
include Tmax, Tmin, RF and RH, with unweighted indices
totalling weekly weather variable values.
Unweighted Weather indices
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Weighted weather indices
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Where,
 Value of ith\i’th weather variable under study in

wth week,
 Correlation coefficient of yield with ith weather

variable/ product of ith and i’th weather variables
in wth week.

 Week of forecast.
Climatic Variability assessment

The study used a 22-year dataset of daily

meteorological observations to assess long-term climatic
trends and variability. The data was analyzed monthly
for seasonal and annual evaluations. Statistical analyses
were performed to evaluate spatial and temporal
variability, using key descriptive statistics like mean,
standard deviation and coefficient of variation as
indicators.
Trend analysis of Climatic and Yield data
Mann Kendell test

The Mann-Kendall test is a reliable non-parametric
method for detecting trends in time series data,
recommended by the World Meteorological Organization
for analyzing monotonic trends in hydro-meteorological
datasets despite structural changes (Tian et al., 2010).

The test statistic Zc follows a standard normal
distribution, with a null hypothesis (H€ ) rejected if it
exceeds the critical value ±Z.../2, indicating a significant

 
Fig. 1 : Study area map of Korea, Chhattisgarh.
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trend in the time series (R) and an acceptance (A), if it is
less than or equal to Z...z2, with a 95% confidence level.
Sen’s slope

The approach involves determining the slope by
assessing the variation in measurement relative to the
variation in time.
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Where,
 Q’ = slope between data points xt’ and xt

 xt’ = data measurement at time t’
 xt = data measurement at time t

Different Models Analyzed
This study aims to improve crop yield forecasting for

maize, wheat and rice in Korea by combining
meteorological trend analysis, correlation assessments,
and machine learning. The study uses various machine
learning models, including Multiple Linear Regression,
Stepwise MLR, LASSO, Elastic Net, Ridge Regression,
Random Forest, and Artificial Neural Networks, to create
forecasting models. The data is analyzed in both weighted
and unweighted formats, and a 70:30 data split is applied
for training and testing. The results aim to enhance
prediction accuracy, promote climate-resilient farming,
and provide data-driven insights for agricultural decisions
in Korea.
Statistical analysis and Model evaluation

The study used statistical metrics like Coefficient of
Determination, Root Mean Square Error, Normalized Root
Mean Square Error, and Mean Absolute Error to evaluate
the performance of various crop yield prediction models,
determining the most accurate and reliable model.

Results and Discussion
Trend analysis of weather parameters for Korea
region (2000-2022)

The Mann-Kendall test was used to analyze
meteorological trends in Korea from 2000 to 2022. Results
showed a cooling trend with an annual average of 30.7°C,
increased relative humidity, and stable minimum
temperatures. Rainfall patterns remained consistent,
primarily during the monsoon, averaging 1161.06 mm
annually. These findings could impact long-term
agricultural strategies and yield forecasts in Korea,
highlighting the importance of addressing skewed
meteorological variables.

Table 1 : Unweighted and weighted weather indices for the
development of multivariate models.

Mean weekly weather Unweighted Weighted
variable weather weather

indices indices

Tmax Z10 Z11
Tmin Z20 Z21
Relative Humidity (RH) Z30 Z31
Rainfall (RF) Z40 Z41
Tmax*Tmin Z120 Z121
Tmax*Relative Humidity Z130 Z131
Tmax*Rainfall Z140 Z141
Tmin*Relative Humidity Z230 Z231
Tmin*Rainfall Z240 Z241
Rainfall*Relative Humidity Z340 Z341

Table 2 : Trend analysis using weather parameters.

Average Maximum temperature (0C)
Time series Mean SD CV MK P-value Slope
Annual 30.7 0.71 2.31 -0.34 0.02** -0.03
Winter 26.1 1.23 4.69 -0.31 0.03** -0.09
Pre-Monsoon 37.5 1.21 3.23 -0.12 0.44 -0.05
Monsoon 30.9 0.89 2.89 0.04 0.82 0.00
Post Monsoon 26.9 1.39 5.19 -0.20 0.19 -0.06
Average Minimum temperature (0C)
Time series Mean SD CV MK P-value Slope
Annual 18.4 0.36 1.95 -0.08 0.60 -0.01
Winter 10.4 0.77 7.36 -0.20 0.17 -0.03
Pre-Monsoon 21.5 0.78 3.61 -0.08 0.60 -0.01
Monsoon 23.4 0.39 1.67 0.11 0.47 0.01
Post Monsoon 15.7 0.68 4.33 0.02 0.90 0.00
Average Relative humidity (%)
Time series Mean SD CV MK P-value Slope
Annual 57.3 3.95 6.88 0.41 0.01** 0.27
Winter 48.7 8.28 17.00 0.40 0.01** 0.55
Pre-Monsoon 29.2 6.52 22.33 0.21 0.16 0.21
Monsoon 78.7 3.72 4.73 0.06 0.71 0.03
Post Monsoon 69.8 6.98 9.99 0.25 0.09 0.38
Average Rainfall (mm)
Time series Mean SD CV MK P-value Slope
Annual 1161.06 194.31 16.74 0.18 0.22 5.08
Winter 45.07 30.75 68.22 0.20 0.17 1.36
Pre-monsoon 79.32 41.74 52.62 0.08 0.60 0.66
Monsoon 975.89 161.11 16.51 0.07 0.67 2.22
Post monsoon 60.78 66.18 108.88 0.04 0.82 0.24

Where, *** 0.1 level of significance, **0.05 level of
significance, * 0.01 level of significance.
Mean, SD – Standard Deviation, CV – Coefficient of Variation,
MK – Mann Kendall test, P Value – probability value, slope
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Correlation analysis between Weather variables and
Crop yield
Correlation between weather and maize yield

The study analyzed the correlation between weekly
weather parameters and maize yield in Korea and India.
Results showed that minimum temperature during SMW
37 and 38 positively impacts yield by enhancing enzymatic
activity and starch accumulation. In India, warmer nights
mitigate cold stress and improve kernel weight. Rainfall
positively influences yield during physiological maturity
(Singh et al., 2022 and Affoh, 2022) (Table 3).
Correlation between weather and Wheat yield

The study assessed wheat yield response to weather
parameters during the Rabi season, revealing negative
correlations between maximum temperature and
minimum temperature. High temperatures impaired
photosynthesis and tiller development, reducing yield.
Minimum temperatures disrupted metabolic activity and
nutrient uptake, leading to stunted development. Relative
humidity negatively impacted yield during harvesting due
to poor drying, increased fungal risk, and delayed harvest
(Hlaváèová et al., 2018 and Liu et al., 2019).
Correlation between weather and rice yield

The study analyzed the impact of weather on rice
yield during the Kharif season, focusing on vegetative
and reproductive stages. Increased maximum

Table 3 : Correlation between weather and maize yield.

Correlation Coefficient Matrix - Maize
SMW Tmax Tmin RF RH
28 0.070 0.057 0.026 -0.151
29 0.223 0.101 -0.106 -0.122
30 -0.078 -0.152 0.091 0.262
31 -0.274 -0.312 0.169 -0.017
32 -0.166 -0.023 0.262 0.179
33 0.121 -0.245 -0.097 0.142
34 0.047 -0.351 -0.056 -0.057
35 0.069 0.276 0.161 0.097
36 0.072 0.057 -0.047 -0.256
37 -0.036 0.603* 0.246 0.178
38 -0.022 0.515* 0.335 0.224
39 -0.074 0.165 0.062 0.195
40 -0.033 0.235 0.107 0.014
41 -0.295 0.249 0.476* 0.211
42 -0.062 0.297 0.335 -0.042
43 -0.161 0.142 0.222 -0.058
44 -0.365 -0.319 0.229 0.004

Where, *Significant at 5% level.

Table 4 : Correlation between weather and Wheat yield.

Correlation Coefficient Matrix - Wheat
SMW Tmax Tmin RF RH
44 0.024 0.057 0.180 -0.017
45 -0.112 -0.222 0.154 -0.129
46 -0.119 -0.041 0.012 -0.192
47 -0.285 -0.199 0.157 0.126
48 -0.222 -0.371 0.214 -0.093
49 -0.076 -0.297 -0.038 -0.218
50 -0.184 0.077 0.339 0.406
51 -0.420* -0.518* -0.006 0.149
52 -0.144 -0.461* 0.094 -0.149
1 -0.300 -0.169 0.187 0.080
2 -0.266 -0.284 0.122 0.288
3 -0.402 -0.132 0.170 0.250
4 -0.148 -0.198 -0.015 -0.242
5 0.165 0.031 -0.092 -0.309
6 -0.037 -0.186 -0.211 -0.290
7 -0.276 -0.173 0.056 0.218
8 -0.219 -0.164 0.166 0.356
9 -0.404 -0.259 0.267 0.267
10 -0.262 -0.273 0.070 -0.037
11 -0.170 -0.160 0.115 0.141
12 -0.274 -0.272 0.211 0.081
13 0.049 0.016 0.005 -0.520*
14 -0.026 0.058 0.043 0.032

Where, *Significant at 5% level.

Table 5 : Correlation between weather and rice yield.

Correlation Coefficient Matrix - Rice
SMW Tmax Tmin RF RH
26 -0.010 -0.056 0.029 -0.031
27 -0.144 0.135 0.249 0.211
28 -0.208 0.028 0.264 0.140
29 0.037 -0.015 0.204 0.050
30 -0.137 -0.005 0.310 0.147
31 -0.353 0.105 0.479* 0.288
32 -0.436* -0.117 0.577* 0.416*
33 -0.074 0.115 0.130 0.201
34 -0.277 -0.052 0.280 0.207
35 -0.090 0.128 0.329 0.267
36 -0.101 0.064 0.203 -0.155
37 -0.126 0.539* 0.404 0.049
38 0.036 0.359 0.065 -0.019
39 -0.085 0.251 0.239 0.259
40 -0.407 0.275 0.398 0.212
41 -0.481* 0.426* 0.625* 0.493*
42 -0.291 0.148 0.263 -0.244
43 -0.465* 0.241 0.423* 0.092

Where, *Significant at 5% level.
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temperature negatively affected yield during SMW 32,
41 and 43, while a slight rise in minimum temperature
improved grain setting in subtropical regions. Precipitation
during reproductive and harvest phases showed a strong
positive correlation with yield. Relative humidity positively
impacted conditions in SMW 32 and 41 (Nguyen et al.,
2014; Yan et al., 2021; Talla et al., 2017; Bal et al., 2023).

Rainfall and relative humidity significantly impact rice
yield in different rice growing regions, with rainfall
supporting productivity during flowering and grain setting,
and relative humidity improving pollen viability and
reducing moisture loss during reproductive stages (Table
5).
Development of the Yield Prediction Model

The study developed crop yield prediction models
for Maize, Wheat, and Rice using machine learning
algorithms. The models were created using 22 years of
data from 2000-2022, with 70% for training and 30% for
testing. The models aimed to identify linear and non-linear
relationships between climatic factors and crop yields.

To improve reliability, 3-fold cross-validation, repeated
runs, and hyperparameter optimization were applied.
Maize Yield prediction performance

The Artificial Neural Network (ANN) demonstrated
strong learning ability in predicting maize yield, with
Multiple Linear Regression (MLR) and Stepwise MLR
achieving the highest accuracy in the unweighted dataset,
while ANN remained the top performer in the weighted
dataset, suggesting simpler models may generalize better
in unweighted cases (Table 6).
Wheat Yield Prediction performance

The ANN model demonstrated strong learning
abilities for predicting wheat yield, but the MLR model
performed best with unweighted data, while MLR and
SMLR outperformed others with weighted data,
suggesting simpler models like MLR and SMLR offer
better generalization and accuracy (Table 7).
Rice Yield prediction performance

The ANN model demonstrated strong learning

Table 6 : Comparison of Maize Yield prediction performance using Weighted and Unweighted across different Models.

Performance of Maize Yield

Unweighted

Models Iteration Training Testing

R² RMSE nRMSE MAE R² RMSE nRMSE MAE

ANN 361 0.94 0.07 0.07* 0.05 0.96 0.13 0.23 0.11

ELNET 106 0.13 0.25 0.25 0.20 0.84 0.12 0.23 0.10

LASSO 106 0.13 0.25 0.25 0.20 0.84 0.12 0.23 0.10

MLR 8 0.33 0.21 0.22 0.17 0.96 0.08 0.11* 0.06

RF 32 0.89 0.16 0.16 0.13 0.96 0.06 0.12 0.05

RIDGE 146 0.15 0.26 0.26 0.21 0.65 0.11 0.24 0.10

SMLR 8 0.33 0.21 0.22 0.17 0.96 0.08 0.11* 0.06

Weighted

Models Iteration Training Testing

R² RMSE nRMSE MAE R² RMSE nRMSE MAE

ANN 221 0.99 0.02 0.03* 0.02 0.79 0.17 0.19* 0.16

ELNET 92 0.32 0.23 0.23 0.21 0.94 0.11 0.24 0.11

LASSO 92 0.32 0.23 0.23 0.21 0.94 0.11 0.23 0.10

MLR 87 0.45 0.19 0.19 0.17 0.76 0.13 0.21 0.09

RF 306 0.92 0.13 0.13 0.11 0.94 0.13 0.21 0.13

RIDGE 181 0.25 0.25 0.25 0.22 0.40 0.14 0.30 0.13

SMLR 87 0.45 0.19 0.19 0.17 0.76 0.13 0.21 0.09

ANN - Artificial Neural Network, ELNET - Elastic Net, LASSO - Least Absolute Shrinkage and Selection Operator, MLR -
Multiple Linear Regression,  RF – Random Forest, RIDGE - Ridge Regression,  SMLR - Multiple Linear Regression.
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Table 7 : Comparison of Wheat yield prediction performance using Weighted and Unweighted across different models.

Performance of Wheat Yield
Unweighted

Models Iteration Training Testing
R² RMSE nRMSE MAE R² RMSE nRMSE MAE

ANN 217 0.97 0.05 0.06* 0.04 0.86 0.12 0.13 0.12
ELNET 183 0.24 0.25 0.25 0.21 0.81 0.07 0.17 0.06
LASSO 183 0.23 0.25 0.25 0.21 0.82 0.08 0.18 0.06
MLR 313 0.42 0.19 0.21 0.16 0.94 0.07 0.10* 0.06
RF 183 0.87 0.13 0.13 0.11 0.96 0.05 0.11 0.03
RIDGE 183 0.27 0.24 0.24 0.21 0.81 0.07 0.17 0.06
SMLR 292 0.47 0.19 0.20 0.16 0.92 0.12 0.17 0.09

Weighted
Models Iteration Training Testing

R² RMSE nRMSE MAE R² RMSE nRMSE MAE
ANN 154 0.99 0.03 0.03* 0.02 0.97 0.05 0.07 0.04
ELNET 164 0.80 0.11 0.12 0.09 0.00 0.72 0.17 0.22
LASSO 319 0.87 0.08 0.10 0.06 0.96 0.09 0.10 0.08
MLR 8 0.89 0.07 0.10 0.05 0.99 0.03 0.03* 0.03
RF 44 0.92 0.09 0.09 0.08 0.95 0.05 0.09 0.03
RIDGE 124 0.85 0.09 0.10 0.08 0.98 0.06 0.08 0.04
SMLR 8 0.89 0.07 0.10 0.05 0.99 0.03 0.03* 0.03

Table 8 : Comparison of Rice Yield prediction Performance using weighted and unweighted across different models.

Performance of Maize Yield
Unweighted

Models Iteration Training Testing
R² RMSE nRMSE MAE R² RMSE nRMSE MAE

ANN 364 0.88 0.09 0.09* 0.07 0.93 0.07 0.13 0.06
ELNET 127 0.42 0.20 0.20 0.17 0.97 0.05 0.08 0.04
LASSO 127 0.42 0.20 0.20 0.17 0.97 0.06 0.10 0.05
MLR 373 0.77 0.12 0.12 0.10 0.98 0.03 0.06* 0.03
RF 54 0.90 0.11 0.11 0.09 0.99 0.06 0.10 0.05
RIDGE 127 0.39 0.20 0.20 0.17 0.98 0.04 0.07 0.03
SMLR 279 0.77 0.12 0.12 0.10 0.97 0.04 0.06* 0.04

Weighted
Models Iteration Training Testing

R² RMSE nRMSE MAE R² RMSE nRMSE MAE
ANN 266 0.97 0.04 0.04* 0.03 0.99 0.04 0.05* 0.03
ELNET 54 0.70 0.16 0.16 0.14 0.98 0.04 0.08 0.03
LASSO 127 0.58 0.17 0.17 0.15 0.99 0.05 0.10 0.05
MLR 91 0.82 0.11 0.11 0.09 0.99 0.05 0.10 0.04
RF 30 0.94 0.07 0.07 0.06 0.99 0.03 0.05* 0.02
RIDGE 334 0.56 0.18 0.18 0.15 0.93 0.07 0.12 0.06
SMLR 91 0.82 0.11 0.11 0.09 0.99 0.05 0.10 0.04
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abilities in training both unweighted and weighted
datasets. MLR and SMLR had the best generalization
and lowest prediction error in unweighted testing. ANN
and RF achieved highest accuracy under weighted
conditions (Table 8).

The study utilized regularized regression models like
LASSO, Elastic Net and Ridge Regression to predict
crop yield. These models penalize coefficients, allowing
some variables to have zero or near-zero values. The
performance was evaluated using metrics like R², RMSE,
MAE, and MBE, showing that fewer influential variables
did not reduce accuracy, resulting in more reliable
predictions. (Vashisth et al., 2020 and Kumar et al.,
2019).

The study evaluated the performance of a model using
both unweighted and weighted datasets. Weighted models
showed lower nRMSE values, indicating better predictive
accuracy and stability. This highlights the importance of
using weighted data to account for historical yield and
climate variations. The study emphasizes the significance
of assigning appropriate weights to data points for reliable
yield forecasts.

The study found that ANN outperformed other
models in training across all crops and datasets. MLR
and SMLR performed best in unweighted datasets, while
ANN, MLR, SMLR and ANN and RF were comparable
in weighted datasets. These findings underscore the
importance of understanding seasonal climate variability
for accurate yield forecasting and climate-resilient
agriculture.

Conclusion
A climate study in Chhattisgarh, Korea, revealed a

cooling trend, with crop yields varying. Maize yield
improved with stable minimum and rainfall conditions,
but suffered from high maximum temperatures. Wheat
was negatively impacted by both high and low
temperatures, while rice benefited from minimum
temperature, rainfall, and humidity but declined with high
maximum temperatures. Advanced models like ANN,
MLR, SMLR and RF proved effective for crop yield
prediction crucial for climate resilient agriculture.
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