

Plant Archives

Journal homepage: http://www.plantarchives.org

DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2025.v25.no.2.019

MACHINE LEARNING APPROACH FOR CEREAL YIELD PREDICTION IN KOREA, CHHATTISGARH, INDIA

Shibin Samuel*, Shraddha Rawat, S.B. Sree Hari and Nilesh Kumar Singh

Department of Agronomy, Sam Higginbottom University of Agriculture Technology and Sciences, Prayagraj-211 007, U.P., India *Corresponding author E-mail: samuel.shibin27@gmail.com
(Date of Receiving-26-05-2025; Date of Acceptance-07-08-2025)

ABSTRACT

This study aims to improve crop yield forecasting for maize, wheat, and rice in Korea by combining meteorological trend analysis, correlation assessments, and machine learning. The study uses various machine learning models, including Multiple Linear Regression, Stepwise MLR, LASSO, Elastic Net, Ridge Regression, Random Forest and Artificial Neural Networks, to create forecasting models. The data is analyzed in both weighted and unweighted formats and a 70:30 data split is applied for training and testing. The results aim to enhance prediction accuracy, promote climate-resilient farming and provide data-driven insights for agricultural decisions in Korea.

Key words: Crop Yield prediction, Machine Learning, Regression analysis, Weather indices, Trend analysis, Correlation analysis.

Introduction

Chhattisgarh, a state in India, primarily produces rice, wheat, maize and pulses. Despite improvements through schemes like Rajiv Gandhi Kisan Nyay Yojana, productivity remains below the national average. India's rice production is projected at 119.93 million tonnes Maize, a major cereal, is at risk of a 55% yield decline by 2080 due to climate stress, highlighting the need for climate-resilient varieties (Byjesh *et al.*, 2010).

Chhattisgarh faces climate change challenges like soil depletion, groundwater depletion and overuse of resources. Rainfed agriculture dominates, with poor awareness and limited climate models. Machine learning offers advanced tools for yield forecasting, improving crop predictions, resource planning, policy planning, market stability and risk management in agriculture (Shrivastava et al., 2019; Angom et al., 2021; Attri et al., 2024).

The objective of the present study is to analyse the trends in weather parameters, examine their correlation with crop yield, and develop as well as compare the prediction accuracy of different machine learning models for crop yield prediction.

Materials and Methods

Study area and data collection

Korea, a North-West District in Chhattisgarh, India, was analyzed using crop yield data from 2000 to 2022 and weather data from NASA Power. The analysis included crop production, cultivated area and weekly averages of weather parameters (https://power.larc.nasa.gov/data-access-viewer/).

Methodology

Weather indices were developed for each weather variable, with unweighted indices summarizing individual variables or their interactions, and weighted indices using the product sum of these variables, considering their correlation with crop yield. The formulas for both indices include Tmax, Tmin, RF and RH, with unweighted indices totalling weekly weather variable values.

Unweighted Weather indices

$$Z_{ij} = \sum_{w=1}^{m} X_{iw}$$

$$Z_{ij'j} = \sum_{w=1}^{m} X_{iw} X_{j'w}$$
(1)

Fig. 1: Study area map of Korea, Chhattisgarh.

Weighted weather indices

$$Z_{ij} = \sum_{w=1}^{m} r_{iw}^{j} X_{iw}$$

$$Z_{ii"m} = \sum_{w=1}^{m} r_{ii'm}^{j} X_{iw} X_{j'w}$$
 (2)

Where.

- Value of $i^{th}\setminus i^{th}$ weather variable under study in w^{th} week.
- Correlation coefficient of yield with ith weather variable/ product of ith and i^{'th} weather variables in wth week.
- Week of forecast.

Climatic Variability assessment

The study used a 22-year dataset of daily

meteorological observations to assess long-term climatic trends and variability. The data was analyzed monthly for seasonal and annual evaluations. Statistical analyses were performed to evaluate spatial and temporal variability, using key descriptive statistics like mean, standard deviation and coefficient of variation as indicators.

Trend analysis of Climatic and Yield data Mann Kendell test

The Mann-Kendall test is a reliable non-parametric method for detecting trends in time series data, recommended by the World Meteorological Organization for analyzing monotonic trends in hydro-meteorological datasets despite structural changes (Tian *et al.*, 2010).

The test statistic Zc follows a standard normal distribution, with a null hypothesis ($H \in$) rejected if it exceeds the critical value $\pm Z...\alpha/2$, indicating a significant

Table 1: Unweighted and weighted weather indices for the development of multivariate models.

Mean weekly weather variable	Unweighted weather indices	Weighted weather indices
T _{max}	Z10	Z11
T_{\min}	Z20	Z 21
Relative Humidity (RH)	Z30	Z31
Rainfall (RF)	Z40	Z41
T _{max} *Tmin	Z120	Z121
T _{max} *Relative Humidity	Z130	Z131
T _{max} *Rainfall	Z140	Z141
T _{min} *Relative Humidity	Z230	Z231
T _{min} *Rainfall	Z240	Z241
Rainfall*Relative Humidity	Z340	Z341

trend in the time series (R) and an acceptance (A), if it is less than or equal to Z...z2, with a 95% confidence level.

Sen's slope

The approach involves determining the slope by assessing the variation in measurement relative to the variation in time.

$$Q' = \frac{x_t' - x_t}{t' - t} \tag{3}$$

Where,

- Q' = slope between data points x_t ' and x_t
- $x_t' = \text{data measurement at time } t'$
- $x_t = \text{data measurement at time } t$

Different Models Analyzed

This study aims to improve crop yield forecasting for maize, wheat and rice in Korea by combining meteorological trend analysis, correlation assessments, and machine learning. The study uses various machine learning models, including Multiple Linear Regression, Stepwise MLR, LASSO, Elastic Net, Ridge Regression, Random Forest, and Artificial Neural Networks, to create forecasting models. The data is analyzed in both weighted and unweighted formats, and a 70:30 data split is applied for training and testing. The results aim to enhance prediction accuracy, promote climate-resilient farming, and provide data-driven insights for agricultural decisions in Korea.

Statistical analysis and Model evaluation

The study used statistical metrics like Coefficient of Determination, Root Mean Square Error, Normalized Root Mean Square Error, and Mean Absolute Error to evaluate the performance of various crop yield prediction models, determining the most accurate and reliable model.

Results and Discussion

Trend analysis of weather parameters for Korea region (2000-2022)

The Mann-Kendall test was used to analyze meteorological trends in Korea from 2000 to 2022. Results showed a cooling trend with an annual average of 30.7°C, increased relative humidity, and stable minimum temperatures. Rainfall patterns remained consistent, primarily during the monsoon, averaging 1161.06 mm annually. These findings could impact long-term agricultural strategies and yield forecasts in Korea, highlighting the importance of addressing skewed meteorological variables.

Table 2: Trend analysis using weather parameters.

Average Maxim	um temp	eratur	e (°C)			
Time series	Mean	SD	CV	MK	P-value	Slope
Annual	30.7	0.71	2.31	-0.34	0.02**	-0.03
Winter	26.1	1.23	4.69	-0.31	0.03**	-0.09
Pre-Monsoon	37.5	1.21	3.23	-0.12	0.44	-0.05
Monsoon	30.9	0.89	2.89	0.04	0.82	0.00
Post Monsoon	26.9	1.39	5.19	-0.20	0.19	-0.06
Average Minim	um temp	erature	e (°C)			
Time series	Mean	SD	CV	MK	P-value	Slope
Annual	18.4	0.36	1.95	-0.08	0.60	-0.01
Winter	10.4	0.77	7.36	-0.20	0.17	-0.03
Pre-Monsoon	21.5	0.78	3.61	-0.08	0.60	-0.01
Monsoon	23.4	0.39	1.67	0.11	0.47	0.01
Post Monsoon	15.7	0.68	4.33	0.02	0.90	0.00
Average Relativ	e humid	ity (%)				
Time series	Mean	SD	CV	MK	P-value	Slope
Annual	57.3	3.95	6.88	0.41	0.01**	0.27
Winter	48.7	8.28	17.00	0.40	0.01**	0.55
Pre-Monsoon	29.2	6.52	22.33	0.21	0.16	0.21
Monsoon	78.7	3.72	4.73	0.06	0.71	0.03
Post Monsoon	69.8	6.98	9.99	0.25	0.09	0.38
Average Rainfal	ll (mm)					
Time series	Mean	SD	CV	MK	P-value	Slope
Annual	1161.06	194.31	16.74	0.18	0.22	5.08
Winter	45.07	30.75	68.22	0.20	0.17	1.36
Pre-monsoon	79.32	41.74	52.62	0.08	0.60	0.66
Monsoon	975.89	161.11	16.51	0.07	0.67	2.22
MOUSOOII	213.02	101.11	10.51	0.07	0.07	2.22

Where, *** 0.1 level of significance, **0.05 level of significance, * 0.01 level of significance.

Mean, **SD** – Standard Deviation, **CV** – Coefficient of Variation, **MK** – Mann Kendall test, **P Value** – probability value, slope

Table 3: Correlation between weather and maize yield.

Correlati	Correlation Coefficient Matrix - Maize							
SMW	T _{max}	T _{min}	RF	RH				
28	0.070	0.057	0.026	-0.151				
29	0.223	0.101	-0.106	-0.122				
30	-0.078	-0.152	0.091	0.262				
31	-0.274	-0.312	0.169	-0.017				
32	-0.166	-0.023	0.262	0.179				
33	0.121	-0.245	-0.097	0.142				
34	0.047	-0.351	-0.056	-0.057				
35	0.069	0.276	0.161	0.097				
36	0.072	0.057	-0.047	-0.256				
37	-0.036	0.603*	0.246	0.178				
38	-0.022	0.515*	0.335	0.224				
39	-0.074	0.165	0.062	0.195				
40	-0.033	0.235	0.107	0.014				
41	-0.295	0.249	0.476*	0.211				
42	-0.062	0.297	0.335	-0.042				
43	-0.161	0.142	0.222	-0.058				
44	-0.365	-0.319	0.229	0.004				

Where, *Significant at 5% level.

Table 4: Correlation between weather and Wheat yield.

Correlati	Correlation Coefficient Matrix - Wheat								
SMW	T _{max}	T _{min}	RF	RH					
44	0.024	0.057	0.180	-0.017					
45	-0.112	-0.222	0.154	-0.129					
46	-0.119	-0.041	0.012	-0.192					
47	-0.285	-0.199	0.157	0.126					
48	-0.222	-0.371	0.214	-0.093					
49	-0.076	-0.297	-0.038	-0.218					
50	-0.184	0.077	0.339	0.406					
51	-0.420*	-0.518*	-0.006	0.149					
52	-0.144	-0.461*	0.094	-0.149					
1	-0.300	-0.169	0.187	0.080					
2	-0.266	-0.284	0.122	0.288					
3	-0.402	-0.132	0.170	0.250					
4	-0.148	-0.198	-0.015	-0.242					
5	0.165	0.031	-0.092	-0.309					
6	-0.037	-0.186	-0.211	-0.290					
7	-0.276	-0.173	0.056	0.218					
8	-0.219	-0.164	0.166	0.356					
9	-0.404	-0.259	0.267	0.267					
10	-0.262	-0.273	0.070	-0.037					
11	-0.170	-0.160	0.115	0.141					
12	-0.274	-0.272	0.211	0.081					
13	0.049	0.016	0.005	-0.520*					
14	-0.026	0.058	0.043	0.032					

Where, *Significant at 5% level.

Correlation analysis between Weather variables and Crop yield

Correlation between weather and maize yield

The study analyzed the correlation between weekly weather parameters and maize yield in Korea and India. Results showed that minimum temperature during SMW 37 and 38 positively impacts yield by enhancing enzymatic activity and starch accumulation. In India, warmer nights mitigate cold stress and improve kernel weight. Rainfall positively influences yield during physiological maturity (Singh *et al.*, 2022 and Affoh, 2022) (Table 3).

Correlation between weather and Wheat yield

The study assessed wheat yield response to weather parameters during the *Rabi* season, revealing negative correlations between maximum temperature and minimum temperature. High temperatures impaired photosynthesis and tiller development, reducing yield. Minimum temperatures disrupted metabolic activity and nutrient uptake, leading to stunted development. Relative humidity negatively impacted yield during harvesting due to poor drying, increased fungal risk, and delayed harvest (Hlaváèová *et al.*, 2018 and Liu *et al.*, 2019).

Correlation between weather and rice yield

The study analyzed the impact of weather on rice yield during the Kharif season, focusing on vegetative and reproductive stages. Increased maximum

Table 5: Correlation between weather and rice yield.

Correlation	Correlation Coefficient Matrix - Rice								
SMW	Tmax	Tmin	RF	RH					
26	-0.010	-0.056	0.029	-0.031					
27	-0.144	0.135	0.249	0.211					
28	-0.208	0.028	0.264	0.140					
29	0.037	-0.015	0.204	0.050					
30	-0.137	-0.005	0.310	0.147					
31	-0.353	0.105	0.479*	0.288					
32	-0.436*	-0.117	0.577*	0.416*					
33	-0.074	0.115	0.130	0.201					
34	-0.277	-0.052	0.280	0.207					
35	-0.090	0.128	0.329	0.267					
36	-0.101	0.064	0.203	-0.155					
37	-0.126	0.539*	0.404	0.049					
38	0.036	0.359	0.065	-0.019					
39	-0.085	0.251	0.239	0.259					
40	-0.407	0.275	0.398	0.212					
41	-0.481*	0.426*	0.625*	0.493*					
42	-0.291	0.148	0.263	-0.244					
43	-0.465*	0.241	0.423*	0.092					

Where, *Significant at 5% level.

Performa	nce of Maize	Yield							
			Unweight	ed					
Models	Iteration	Training							
		R ²	RMSE	nRMSE	MAE	R ²	RMSE	nRMSE	MAE
ANN	361	0.94	0.07	0.07*	0.05	0.96	0.13	0.23	0.11
ELNET	106	0.13	0.25	0.25	0.20	0.84	0.12	0.23	0.10
LASSO	106	0.13	0.25	0.25	0.20	0.84	0.12	0.23	0.10
MLR	8	0.33	0.21	0.22	0.17	0.96	0.08	0.11*	0.06
RF	32	0.89	0.16	0.16	0.13	0.96	0.06	0.12	0.05
RIDGE	146	0.15	0.26	0.26	0.21	0.65	0.11	0.24	0.10
SMLR	8	0.33	0.21	0.22	0.17	0.96	0.08	0.11*	0.06
			Weighted		-1		-		
Models	Iteration	Training				Testing			
		R ²	RMSE	nRMSE	MAE	R ²	RMSE	nRMSE	MAE
ANN	221	0.99	0.02	0.03*	0.02	0.79	0.17	0.19*	0.16
ELNET	92	0.32	0.23	0.23	0.21	0.94	0.11	0.24	0.11
LASSO	92	0.32	0.23	0.23	0.21	0.94	0.11	0.23	0.10
MLR	87	0.45	0.19	0.19	0.17	0.76	0.13	0.21	0.09
RF	306	0.92	0.13	0.13	0.11	0.94	0.13	0.21	0.13
RIDGE	181	0.25	0.25	0.25	0.22	0.40	0.14	0.30	0.13
SMLR	87	0.45	0.19	0.19	0.17	0.76	0.13	0.21	0.09

Table 6: Comparison of Maize Yield prediction performance using Weighted and Unweighted across different Models.

ANN - Artificial Neural Network, **ELNET** - Elastic Net, **LASSO** - Least Absolute Shrinkage and Selection Operator, **MLR** - Multiple Linear Regression, **RF** – Random Forest, **RIDGE** - Ridge Regression, **SMLR** - Multiple Linear Regression.

temperature negatively affected yield during SMW 32, 41 and 43, while a slight rise in minimum temperature improved grain setting in subtropical regions. Precipitation during reproductive and harvest phases showed a strong positive correlation with yield. Relative humidity positively impacted conditions in SMW 32 and 41 (Nguyen *et al.*, 2014; Yan *et al.*, 2021; Talla *et al.*, 2017; Bal *et al.*, 2023).

Rainfall and relative humidity significantly impact rice yield in different rice growing regions, with rainfall supporting productivity during flowering and grain setting, and relative humidity improving pollen viability and reducing moisture loss during reproductive stages (Table 5).

Development of the Yield Prediction Model

The study developed crop yield prediction models for Maize, Wheat, and Rice using machine learning algorithms. The models were created using 22 years of data from 2000-2022, with 70% for training and 30% for testing. The models aimed to identify linear and non-linear relationships between climatic factors and crop yields.

To improve reliability, 3-fold cross-validation, repeated runs, and hyperparameter optimization were applied.

Maize Yield prediction performance

The Artificial Neural Network (ANN) demonstrated strong learning ability in predicting maize yield, with Multiple Linear Regression (MLR) and Stepwise MLR achieving the highest accuracy in the unweighted dataset, while ANN remained the top performer in the weighted dataset, suggesting simpler models may generalize better in unweighted cases (Table 6).

Wheat Yield Prediction performance

The ANN model demonstrated strong learning abilities for predicting wheat yield, but the MLR model performed best with unweighted data, while MLR and SMLR outperformed others with weighted data, suggesting simpler models like MLR and SMLR offer better generalization and accuracy (Table 7).

Rice Yield prediction performance

The ANN model demonstrated strong learning

Table 7: Comparison of Wheat yield prediction performance using Weighted and Unweighted across different models.

Performa	nce of Wheat	Yield							
			Unweighte	ed					
Models	Iteration	Training							
		R ²	RMSE	nRMSE	MAE	R ²	RMSE	nRMSE	MAE
ANN	217	0.97	0.05	0.06*	0.04	0.86	0.12	0.13	0.12
ELNET	183	0.24	0.25	0.25	0.21	0.81	0.07	0.17	0.06
LASSO	183	0.23	0.25	0.25	0.21	0.82	0.08	0.18	0.06
MLR	313	0.42	0.19	0.21	0.16	0.94	0.07	0.10*	0.06
RF	183	0.87	0.13	0.13	0.11	0.96	0.05	0.11	0.03
RIDGE	183	0.27	0.24	0.24	0.21	0.81	0.07	0.17	0.06
SMLR	292	0.47	0.19	0.20	0.16	0.92	0.12	0.17	0.09
			Weighted					'	
Models	Iteration	Training				Testing			
		R ²	RMSE	nRMSE	MAE	\mathbb{R}^2	RMSE	nRMSE	MAE
ANN	154	0.99	0.03	0.03*	0.02	0.97	0.05	0.07	0.04
ELNET	164	0.80	0.11	0.12	0.09	0.00	0.72	0.17	0.22
LASSO	319	0.87	0.08	0.10	0.06	0.96	0.09	0.10	0.08
MLR	8	0.89	0.07	0.10	0.05	0.99	0.03	0.03*	0.03
RF	44	0.92	0.09	0.09	0.08	0.95	0.05	0.09	0.03
RIDGE	124	0.85	0.09	0.10	0.08	0.98	0.06	0.08	0.04
SMLR	8	0.89	0.07	0.10	0.05	0.99	0.03	0.03*	0.03

Table 8 : Comparison of Rice Yield prediction Performance using weighted and unweighted across different models.

Performa	nce of Maize	Yield							
			Unweight	ed					
Models	Iteration	Training				Testing			
		R ²	RMSE	nRMSE	MAE	R ²	RMSE	nRMSE	MAE
ANN	364	0.88	0.09	0.09*	0.07	0.93	0.07	0.13	0.06
ELNET	127	0.42	0.20	0.20	0.17	0.97	0.05	0.08	0.04
LASSO	127	0.42	0.20	0.20	0.17	0.97	0.06	0.10	0.05
MLR	373	0.77	0.12	0.12	0.10	0.98	0.03	0.06*	0.03
RF	54	0.90	0.11	0.11	0.09	0.99	0.06	0.10	0.05
RIDGE	127	0.39	0.20	0.20	0.17	0.98	0.04	0.07	0.03
SMLR	279	0.77	0.12	0.12	0.10	0.97	0.04	0.06*	0.04
			Weighted		•	'	'	'	'
Models	Iteration	Training				Testing			
		R ²	RMSE	nRMSE	MAE	R ²	RMSE	nRMSE	MAE
ANN	266	0.97	0.04	0.04*	0.03	0.99	0.04	0.05*	0.03
ELNET	54	0.70	0.16	0.16	0.14	0.98	0.04	0.08	0.03
LASSO	127	0.58	0.17	0.17	0.15	0.99	0.05	0.10	0.05
MLR	91	0.82	0.11	0.11	0.09	0.99	0.05	0.10	0.04
RF	30	0.94	0.07	0.07	0.06	0.99	0.03	0.05*	0.02
RIDGE	334	0.56	0.18	0.18	0.15	0.93	0.07	0.12	0.06
SMLR	91	0.82	0.11	0.11	0.09	0.99	0.05	0.10	0.04

abilities in training both unweighted and weighted datasets. MLR and SMLR had the best generalization and lowest prediction error in unweighted testing. ANN and RF achieved highest accuracy under weighted conditions (Table 8).

The study utilized regularized regression models like LASSO, Elastic Net and Ridge Regression to predict crop yield. These models penalize coefficients, allowing some variables to have zero or near-zero values. The performance was evaluated using metrics like R², RMSE, MAE, and MBE, showing that fewer influential variables did not reduce accuracy, resulting in more reliable predictions. (Vashisth *et al.*, 2020 and Kumar *et al.*, 2019).

The study evaluated the performance of a model using both unweighted and weighted datasets. Weighted models showed lower nRMSE values, indicating better predictive accuracy and stability. This highlights the importance of using weighted data to account for historical yield and climate variations. The study emphasizes the significance of assigning appropriate weights to data points for reliable yield forecasts.

The study found that ANN outperformed other models in training across all crops and datasets. MLR and SMLR performed best in unweighted datasets, while ANN, MLR, SMLR and ANN and RF were comparable in weighted datasets. These findings underscore the importance of understanding seasonal climate variability for accurate yield forecasting and climate-resilient agriculture.

Conclusion

A climate study in Chhattisgarh, Korea, revealed a cooling trend, with crop yields varying. Maize yield improved with stable minimum and rainfall conditions, but suffered from high maximum temperatures. Wheat was negatively impacted by both high and low temperatures, while rice benefited from minimum temperature, rainfall, and humidity but declined with high maximum temperatures. Advanced models like ANN, MLR, SMLR and RF proved effective for crop yield prediction crucial for climate resilient agriculture.

References

- Affoh, R., Zheng H., Zhang X., Yu W. and Qu C. (2022). Influences of meteorological factors on maize and sorghum yield in Togo, West Africa. *Land*, **12(1)**, 123.
- Angom, J., Viswanathan P.K. and Ramesh M.V. (2021). The dynamics of climate change adaptation in India: a review of climate smart agricultural practices among smallholder

- farmers in Aravalli district, Gujarat, India. *Curr. Res. Environ. Sust.*, **3**, 100039. Doi: https://doi.org/10.1016/j.crsust.2021.100039
- Attri, I., Awasthi L.K. and Sharma T.P. (2024). Machine learning in agriculture: A review of crop management applications. *Multimedia Tools and Applications*, **83(5)**, 12875-12915.
- Bal, S. K., Sattar A., Nidhi, Chandran M.A.S., Subba Rao A.V.M., Manikandan N. and Singh V.K. (2023). Critical weather limits for paddy rice under diverse ecosystems of India. Front. Plant Sci., 14, 1226064.
- Byjesh, K., Kumar S.N. and Aggarwal P.K. (2010). Simulating impacts, potential adaptation and vulnerability of maize to climate change in India. *Mitigation and Adaptation Strategies for Global Change*, **15**, 413-431. Doi: https://doi.org/10.1007/s11027-010-9224-3
- Hlaváèová, M., Klem K., Rapantová B., Novotná K., Urban O., Hlavinka P. and Trnka M. (2018). Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat. *Field Crops Res.*, **221**, 182-195.
- Kumar, A. (2021). Wheat productivity and growth trends in Chhattisgarh. Directorate of Agriculture, Chhattisgarh.
- Liu, L., Song H., Shi K., Liu B., Zhang Y., Tang L. and Zhu Y. (2019). Response of wheat grain quality to low temperature during jointing and booting stages—On the importance of considering canopy temperature. *Agricult. Forest Meteorol.*, **278**, 107658.
- Nguyen, D.N., Lee K.J., Kim D.I., Anh N.T. and Lee B.W. (2014). Modeling and validation of high-temperature induced spikelet sterility in rice. *Field Crops Res.*, **156**, 293-302.
- Shrivastava, S. and Shrivastava O.L. (2019). Impact of Climate Change on Agriculture in Chhattisgarh.
- Singh, V.J., Biswas B. and Sandhu S.K. (2022). Climate-based forecasting of maize yield in Punjab using machine learning. *Agricult. Res. J.*, **59(2)**.
- Talla, A., Swain D.K., Tewari V.K. and Biswal M.P. (2017). Significance of weather variables during critical growth stages for hybrid rice production in subtropical India. *Agron. J.*, **109(5)**, 1891-1899.
- Tian, Y., Tian X., Yang B., Ma J., Shan J. and Xing F. (2024). Analysis of the impact of drying on common wheat quality and safety. *Heliyon*, **10(12)**.
- Vashisth, A., Aravind K.S., Das B. and Krishnan P. (2023). Multi stage wheat yield estimation using multiple linear, neural network and penalised regression models: Wheat yield estimation. *Mausam*, **74**(3), 833-846. Doi: https://doi.org/10.54302/mausam.v74i3.1923
- Yan, H., Wang C., Liu K. and Tian X. (2021). Detrimental effects of heat stress on grain weight and quality in rice (*Oryza sativa* L.) are aggravated by decreased relative humidity. *PeerJ.*, **9**, e11218.